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Mass Action and Polynomial Optimization 
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An analogy between the law of mass action and generalized polynomial optimization is proven, interpreted, and 
illustrated numerically. The example, which involves finding optimal temperatures in three chemical reactors in 
series, has been solved previously by other optimization methods. In this case the theory leads to insight into the 
structure of the optimum rather than to improved computational procedures. 

1. Introduction 

There is an instructive analogy between generalized polynomial optimization and the law of 
mass action describing chemical equilibrium. Generalized polynomial optimization [11], 
[161, [17], [201, applicable to many chemical engineering design situations, replaces a highly 
nonlinear constrained optimization problem with another "auxiliary" one whose variables 
satisfy more tractable linear equations. Only rarely, however, are there as many linear equa- 
tions as auxiliary variables, and this article gives, for the first time, a set of additional equations 
sufficient to determine solutions. These new equations, although nonlinear, each have only one 
variable term, whose form resembles the equilibrium expression of the law of mass action. 
Since the linear equations can be interpreted as the results of a dimensional analysis, the new 
"equilibrium conditions" complete an analogy between the original optimization problem 
and laws of nature well known to chemical engineers. 

Section 2 states the original generalized polynomial optimization problem, a form occurring 
widely in chemical engineering systems. The main result, together with statement of the 
auxiliary problem, is given without proof in the next section. Chemical and physical analogies 
are developed in section 4 and verified numerically in section 5, which applies the results to a 
well known reactor system serial optimization problem solved previously by dynamic pro- 
gramming [1], and variational methods [9], [12]. It is no doubt interesting to optimization 
theorists that this particular problem can be formulated with generalized polynomials, for it is 
a prototype of many chemical reactor design problems. However, this approach shows no 
computational advantage in this case. Section 6 shows how the original equality constraints of 
the problem were replaced by inequality constraints, a surprising procedure which happens to 
be advantageous in polynomial optimization. The formal proof of the equilibrium conditions, 
an extension of the first paper on polynomial optimization [16], is reserved until the final 
technical section so as not to impede the development of ideas of more direct interest to chemical 
engineers not specializing in optimization theory. 

The equilibrium conditions given here extend a close analogy between geometric program- 
ming [21, [3], [111, [17] and the fact that free energy is minimum at chemical equilibrium 
[4], [5], [61, [7], [8], [101, [14], [18], [19]. Just as generalized polynomial optimization is 
an extension of geometric programming, so the law of mass action formulation is based on the 
minimum free energy concept. 

2. The Primal Generalized Polynomial Problem 

The notation follows [20, Ch. 4]. Consider M + I  generalized polynomial functions gin(x) 
(m = 0, 1 . . . . .  M) of N real finite positive variables x, (n = 1, ..., N). That is 
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T ~  N 

o.(x) = Z Cm, I1 x".=~ (1) 
t = l  n = l  

with Go > x ,  > 0  unknown, assembled into a vector x = (xl, ..., x,), and the following real 
constants given : Cmt > O, amt = __ 1, and amt,, unrestricted in sign. The generalized polynomial 
optimization problem is to find x* minimizing go 

go(x*) - min go(X) (2) 
x 

among all x satisfying the M constraints 

am[gm(X)]"m~ 1, m = l  . . . . .  M (3) 

where 

O'm= _+1 

is a known constant. For technical reasons discussed elsewhere, [16] it is assumed that the 
Kuhn-Tucker  constraint qualification [13], [15] is satisfied at x*. When all o-~,t and O-m are 
+ 1, the problem is called geometric programming [11], [13]. 

3. Main Result 

The solution x* to the primal problem can be found by solving a different problem involving 
N +  1 linear equations, and T - ( N +  1) single term algebraic nonlinear equations in T un- 
knowns. Here T, being the total number of terms in the primal problem, is given by 

M 

T -= 2 Tm" (4) 
m = 0  

Notice that since there are exactly as many equations as there are unknowns, no optimization 
is involved in the secondary "auxiliary" problem. In general the auxiliary dual problem has only 
a finite number of solutions, provided the equations are independent. As long as the primal 
problem has a finite minimum, the auxiliary problem will have at least one solution. 

N 
Consider T non-negative auxiliary variables C0mt, one for each term amt Cmt ~, X a"*" in the 

primal problem , = 1 

>/0. (5) 

They are required to satisfy a single normality condition involving an unknown signum function 

To 
ao Z ~176 = 1 (6) 

t = l  

as well as N linear orthogonality conditions 
M Tm 

2 Z a,,,amt.OOmt = O, ~ = 1, ..., N .  (7) 
m = 0  t = l  

The orthogonality conditions can be regarded as the results of the dimensional analysis of a 
certain function. Discussion of this interesting interpretation will, however, be deferred to a 
later section because it has been pointed out in other articles [3], [11]. 

In [16] it was proven that the following M +  1 quantities, one for each primal generalized 
polynomial, must also be non-negative. 

COoo - 1 > 0 (8) 

Tm 

O~mo -~ am E amt69mt ~ 0 ,  m = 1 . . . . .  M .  (9)  
t = l  
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For reasons to be justified later, let these quantities be forbidden to vanish 

COmO > 0  (10) 

so that for future abbreviation the following wei#hts, Win, one for each primal term, can be 
defined. 

Win, =- e)mt/COmO , m = O, 1, . . . ,  M . (11) 

They are called weights because they must sum to unity for each generalized polynomial. 

Trn 

am 2 amtWmt = 1 ,  m = 1, 1 . . . . .  M .  (12) 
t = l  

These M conditions may be called the weight normality conditions, since they include the usual 
normality condition. 

The linear normality and orthogonality conditions, assuming they are linearly independent 
equations, have T - ( N +  1) degrees of freedom, or "degrees of difficulty" as they have been 
termed in this context [113. Hence the equations have T -  (N + t) independent homogeneous 
solutions, each involving T numbers, one for each term. Let the final index r = 1, ..., T -  (N + 1) 
distinguish between these solutions, and let the first two subscripts m and t of their individual 
components correspond to those of the weights Wmt. Then the components Vmt~ are defined to 
satisfy, for every r, the homogeneous linear equations 

To 

Z aotV0,, = 0 (13) 
t = l  

M Tm 

E Z amtamtnVm" " = 0 '  n =  1 . . . .  , N .  (14) 
m = 0  t = l  

The real numbers Vmt,., very easy to calculate, are combined with the primal coefficients c,,, 
to compute T - ( N +  1) real equilibrium constants K,.. 

M Trn 

K r - - H H  . . . . . . . .  %, , r 1 . . . . .  T - ( N + I ) .  (15) 
m=O t = l  

These constants are used to construct a third set of equilibrium conditions involving the 
weights which in principle completely determine numerical values of the auxiliary variables e~. 

M Tm 

I-[ 1-[ w~T t .... = Kr , r = 1 ..... T - ( N + I )  . (16) 
m = 0  t = l  

The adjective "equilibrium" is suggested by the form of these equations, which resembles that 
describing the "law of mass action" for predicting equilibrium concentrations of chemicals 
reacting reversibly. The analogy will be discussed at length in the next section. 

When a set of positive O9m3 and w,,t satisfying the normality, orthogonality, and equilibrium 
conditions (eqs. 12, 7 and 16) have been found, together with the corresponding value of the 
signum function a, they may be used to evaluate the auxiliary function, given by: 

..... t 
At such a point (o the auxiliary function has the same value as the primal objective function 
go (x) at a primal point x > 0 whose coordinates are related to the weights. That is, 

go (x) = d(o) (18) 
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where x and w are related by 

and 

N 
Wo~ = Cot FI x~,~ (19) 

n = l  

N 

Wmt = Cmt H xamt"' m = 1 . . . . .  M .  (20)  
n=l 

The xn may be found from the known wm~ by direct multiplication and division of appropriate 
powers of eqs. (19) and (20). They may also be found by taking logarithms ofeqs. (19) and (20), 
solving the resulting equations linear in the variables log x,, and then taking antilogarithms. 

Such points x are interesting because it has been proven [16] that one of them gives the 
minimum value of go, if there is a minimum, and hence solves the primal problem. When there 
are multiple solutions, one need evaluate x only where the corresponding dual solution e~ 
gives the smallest value of d(co). 

Eqs. (19) and (20) show why the weights can be assumed not to vanish; the positivity and 
finiteness of the primal variables forbids this. 

w,., > 0. (21) 

This avoids difficulty with the equilibrium conditions, which could not be satisfied if any 
weights were zero. 

In [16] it is proven that eq. (10), which assumes the COrn0 do not vanish, is equivalent to 
requiring that the corresponding primal constraint eqs. (3) are tight, i.e., satisfied as equalities. 
This situation is tolerable when, as in many engineering problems, it is known in advance which 
constraints will be tight at the optimum. If the tightness of a constraint is doubtfull, it may be 
deleted from the constraint set, and dual solutions computed. Any dual solution based on 
deleting primal constraints must have its primal point checked for feasibility. While in principle 
all combinations of tight and loose constraints should be examined, this is rarely necessary in 
practice. In the example to be described, all constraints were known to be tight, and the auxi- 
liary equations had only one solution. 

4. Physical and Chemical Analogies 

The equilibrium conditions of eq. (16) lend themselves to instructive analogies with the law of 
mass action in chemical equilibrium. Let the weights wmt be regarded as concentrations of a 
chemical in a phase m. The exponents v,,t,, can be viewed as analogs of stoichiometric coeffi- 
cients for a chemical reaction involving the weights wm~, with Kr as the equilibrium coefficient. 
Thus for example the expression 

w  w; =lOO 

in which the exponents are v~al =2 and v~z~ = - 3  and Kr= 100 is mathematically analogous 
to the reversible chemical reaction 

3A 2 ~ 2 A  1 

with A1 and Az representing chemical species whose concentrations are respectively wll 
and w12. The high equilibrium constant K1 - 100 would indicate that equilibrium would favor 
large concentration of A1 and small concentrations of A 2 at equilibrium. In this way the 
equilibrium conditions, nonlinear though they are as formulated, may yield insight into the 
relative values of the weights and produce reasonable starting guesses for numerical procedures. 

The analogy is not complete, however. For one thing, the weights may be greater than unity 
and hence do not resemble concentrations as expressed in tool fractions. Moreover, the expo- 
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nents vm~,. may not be integers, as required in chemistry by the law of definite proportions. 
Finally, all of the exponents Vm~r may have the same sign, which would correspond to the 
impossible situation of all reactants and no products, or vice versa. 

The N orthogonality conditions of eq. (7) can be interpreted physically as ~the results of a 
dimensional analysis, for they restrict values of the e~ to those which make the following 
expression, formed from the primal terms 

N 

Cmt H X~ mtn , 
n = l  

reduce to the auxiliary function d(~o) in which the x have cancelled out. 

. . . .  
x .  / w m  = " H ( c J w m , )  . . . . .  = . 

m = 0  t = l  

This fact, which may be verified by direct application of eq. (7), is too well known to warrant 
further discussion here [11], [16], [20]. 

The physical interpretation of the normality conditions (eq. 12) is obvious; they permit 
viewing the w as weights. Thus all of the auxiliary conditions have physical or chemical 
analogies now that the nonlinear equations, one for each degree of difficulty, have been 
interpreted as equilibrium conditions. 

In most engineering problems, the exponents a,,,n are fixed by physical or geometric con- 
siderations and rarely change, whereas the coefficients c,,, are often derived from such tran- 
sitory economic data as unit costs or prices. Hence all of the auxiliary information con- 
cerning the varying cmt is concentrated in the equilibrium constants Kr, (eq. 15). In this way the 
equilibrium conditions, by explicitly showing how the optimal weights depend on the %t, give 
insight into the sensitivity of the solution. 

5. Example: Three Reactors in Series 

The theory will now be illustrated by application to a well known chemical engineering 
problem--the choice of temperatures in three continuous serial tank reactors which maximize 
chemical yield from the third. The desired material B is produced from A by the following 
sequence of first order reactions, which lead ultimately to a degradation product D. 

A ~ B ~ D .  

The rates for the two reactions are respectively 

rl = kl exp (-E1/RT) (22) 

r2 = k2 exp (-E2/RT).  (23) 

These reactions occur in a series of three stirred tank reactors having the same volume. It is 
desired to maximize the yield of material B leaving the third reactor when the initial flow rate 
of materials A and B are given and the flow rate of A leaving the last reactor is fixed. 

This problem, first solved by Aris [1], was chosen because it has been used frequently for 
demonstrating various optimization methods [9], [12], and is a prototype of many involving 
chemical reaction system optimization. Hence it is interesting that the same problem can be 
formulated with generalized polynomials and solved using the normality, orthogonality, and 
equilibrium conditions. Also the equality constraints of this problem can be replaced by in- 
equalities, as required by generalized polynomial optimization theory, and still yield the proper 
solution. Further, through a simple transformation one can guarantee that no auxiliary weights 
ever exceed unity. The example, while providing a numerical check on the theory, does not, 
however, demonstrate any present computational advantage in the generalized polynomial 
formulation. 

To emphasize the chemical structure of the example, the abstract use ofx, for primal problem 
variables will be sacrificed in favor of A,, B, (n = 1, 2, 3) respectively for tool flow of materials 
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A and B (mols/min) and T, for the reactor temperatures. Let the feed rates be Ao = 10 mols/min 
and Bo=0.1 mols/min, and suppose the fixed production rate A3 is 0.1 tools/rain. Then the 
problem is constrained by the following mass balance equations, one for each reactor n = 1, 2, 3. 

A._ ~ = A, + A, k 1 exp ( - E a/R 7",) (24) 
B,_ 1 = B,+ B ,k  2 exp ( -E2/RT, )  - a , k ,  exp ( -Ex /RT, )  . (25) 

To express these transcendental functions as generalized polynomials, define, for n = 1, 2, 3" 

0, - exp ( -  EI/RT~). (26) 

To obtain a numerical solution, suppose that k~ = 10, k 2 = 1, and Ez/E 1 --2. A further special 
feature of this reactor optimization problem is that one can guarantee that no weight in the 
auxiliary problem will exceed unity, by introducing the following variables for n =  1, 2, 3 

C. =- B,_ I/(B,_1+ A, kt O,) . (27) 

Then the optimization problem can be written as to maximize the yield rate B3, or equivalently 
to minimize its reciprocal 

min B31 = min go (28) 

subject to positivity constraints obviously satisfied automatically for physical reasons 

A,, B,, C., 0. > 0 (29) 

and to the following generalized polynomial constraints derived from eqs. (24-27). Note that 
all these constraints must be satisfied as equalities, since they are derived from equations. 
Justification for replacing these equations by inequalities of the senses given is discussed in the 
next section. The constraints are: 

gl =O.1Aa+AI01 <,K, t ] 

g2 = 10BICt+10B1C102 <~ 1 

- g 3 1 =  - ( - C 1 - 1 0 0 A 1 C 1 0 1 )  -1 <~ 1 

Reactor 1 

94 = - ( - A - ~ l A 2 - 1 0 A ~ I A 2 0 2 ) - l < ~  1 ] 

g5 = BI IB2C2+Bl lB2C202  ~< 1 [ Reactor 2 
- g 6 1  = _ (_  C2_ 100A2B~- 1 C202)- 1 <~ 1 

g7 = - ( - O . 1 A ; 1 - : A ; l O 3 ) - I  <~ 1 

g8 =B21B3C3+B-21B3C30~ <~ 1 
- 0 9 1  = -- (C3-B21C303) -1 • 1 

Reactor 3 

The signum functions for the constraints g3. (n = 1, 2, 3) are negative (rr3, = - 1), while all the 
rest are positive. Since the yield B3 can only be positive, it is known in advance that cr o = 1, i.e., 
that the optimal value of the objective, and hence of the auxiliary function, must be positive. 
Since the signs of each of the terms are also given by eqs. (30), this completes the formulation 
of the primal problem. 

For each of the 19 terms in eqs. (28) and (30) define an auxiliary variable m,,t, where in this 
example m = 0, 1 . . . . .  9, while t = 1 for m = 0, and t = 1, 2 for m = 1, ..., 9. The normality con- 
dition (eq. 6) is simply 

COol = 1. (31) 

The orthogonality conditions are, for the 11 primal variables listed to the left of each equation, 
given by eq. (7) as: 
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AI :  0)at+0)12 --(D32+O)d-l-l-(D42 = 0 

B I :  i;021+0922 --0951--(2)52 +0)62  ~- 0 

C 1 : 0)21+0)22--( .031--(032 = 0 

01 i 0)12 +20)22 --0)32 = 0 

A2:  o)711-0)72 - -o)41--0)42 --0)62 ~ 0 

B2:  - 0 ) 8 1 - 0 ) 8 2  -}-0)92 - 0 ) 5 1 + 0 ) 5 2  -~ 0 

C2:  0)51+0)52--( ,061--0)62 ~ 0 

02: -0)42 20)52 -0)62 = 0 

B3 : - 0 )o l  -J- (D 81 "qt- 0)8 2 -'~ 0 

63 : 0)81 +0)82- -0 )91- -0 )92  ~--- 0 

0 3 : - - 0 ) 7 2  +20)82 --0)92 ~-- 0 

(32) 

There are 19 - (11  + 1)=7  degrees of difficulty. The fact that O'm:ffmt for all m =  1 . . . . .  9 and 
t = 1, 2 together with eqs. (8-12) imply that the weights wmt all stun to unity 

Tna 
Z win,= 1, m = 0, 1 . . . . .  9 (33) 
t= l  

and that therefore they never exceed unity individually. 

0<~ wmt<~ 1. (34) 

Below are exhibited linearly independent column vectors v, (r = 1 . . . . .  7) all orthogonal  to 
the coefficients of the normality and orthogonality conditions as required by eqs. (13) and 
(14). To save space, each vector is given beneath its vector symbol. 

V r V 1 V 2 V 3 V.r V 5 •6 V7 

V01r 0 0 0 0 0 0 0 

Vllr 2 --1 --2 1 0 0 0 

V12 r --2 0 0 0 1 0 0 

v21,. - 1  0 0 - 1  0 1 0 

V22 r l 0 0 0 0 0 0 

V31 r 0 0 0 --1 --1 1 0 
•32r 0 0 0 0 I 0 0 

V*ar 0 i 0 0 0 0 0 

V4.2r 0 0 2 -- 1 0 0 0 

V51 r 0 0 - 1  0 0 1 0 

vs2~ 0 0 1 0 0 0 0 

v61~ 0 0 0 - 1 0 1 0 

V62 r 0 0 0 1 0 0 0 

V71 r 0 1 2 0 0 --1 --2 

V72 r 0 0 0 0 0 1 2 

v81,. 0 0 0 0 0 0 - 1  

Vs2 ~ 0 0 0 0 0 0 1 

V91 r 0 0 0 0 0 1 0 

•92r 0 0 0 0 0 -- 1 0 

(35) 

Eqs. (15) and (16) can now be used to obtain the 7 equilibrium conditions. 
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w21 w[22w2~ we2 = 0.01 
wT(w+lw~? = 100 

- 2  Z - 1  - 2  - -  100 Wll  W42W51 W52W71 

W 11W21W31W41W61W621 = 0.01 

w12w31w3~ = 0.01 
(36) 

-1 -1 -1 -1 1 
W21W31 W51W61 W71 W72W91 W92 

- 2  2 - 1  = 0 . 0 1  W71 W72W81 W82 

As a numerical check on the theory, eqs. (31), (33) and (36) were solved by the Newton- 
Raphson method on the Stanford B-5500 computer. No computational advantage over other 
optimization techniques is expected or claimed for this particular problem, which, having only 
two degrees of freedom in its primal form, is probably most speedily solved by a direct method 
([20], ch. 7). Clasen[8] has developed a program for solving such equations, which he calls 

TABLE 1 

Optimal auxiliary variables 

J O)3j- 2,1 O)3j- 2,2' (D3j- 1,1 603j- 1,2 (D3j, I (D3j,2 

1 0 .1491552 0 .569085  0 .6773674  0 .0986109 0 .0096715 0.7663067 
2 0.0104917 0.0375745 0 .8471265 0 .1087228 0 .7759782 0.1798711 
3 0.0502989 0 .1776384 0 .8891054 0 .1108945 0 .9558492 0.0441507 

TABLE 2 

Optimum weights 

J W3j-2,1 W3j-2,2 W3j- 1,1 W3j- 1,2 !'f3j, l W3j,2 

1 0 . 2 0 7 6 6 8  0 . 7 9 2 3 3 2  0 . 8 7 2 9 2 0  0 . 1 2 7 0 7 9  0 .0124635 0.9875364 
2 0 . 2 1 8 2 7 6  0 . 7 8 1 7 2 3  0 . 8 8 6 2 5 5  0 . 1 1 3 7 4 4  0 . 8 1 1 8 2 0  0.188179 
3 0 . 2 2 0 6 7 0  0 . 7 7 9 3 3 0  0 . 8 8 9 1 0 5  0 . 1 1 0 8 9 4  0 . 9 5 5 8 4 4  0.044150 

"linear-logarithmic" system. This special problem has a unique solution given in Tables 1 
and 2. Although only the first two decimal places are physically significant in view of the 
limited precision of kinetic data, seven decimal places have been given in case others wish to 
verify the computations. 

Substitution Of these values into eq. (17) gives a value for the auxiliary function d=0.1406, 
which can be used to generate eqs. (19) and (20). The solution of these equations is the set of 

TABLE 3 

Optimal primal variables 

J 4* 8,* 07 

1 2 . 0 7 6 6  7 . 0 0 3 7  0.3815 
2 0 . 4 5 3 1  7 . 6 4 5 9  0.3582 
3 0 . 1 0 0 0  7 . 1 1 2 0  0.3531 

optimal primal variables given in Table 3. From these the primal objective function is computed 
to be 0.1406 at the optimum as predicted by eq. (18). Hence the optimum yield is (0.1406)-1 
mols/min. 
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6. Constraint Signs 

This section proves that the constraint signum functions used in the preceding section are 
correct. The problem analyzed is a good example of how equations can be replaced by in- 
equalities in many physical situations. Six out of nine signs can be obtained from the ortho- 
gonality conditions (eq. 32); finding the others requires a physical argument. 

The normality condition (eq. 31), the orthogonality condition for B3, and the definition of 
O98o in (eq. 9) give 

0~< O980 = 0-8(O981+o982) = 0-8o901 = 0-8. 

Hence 08--1. Condition C3 gives 

0 <  0 9 0  = 0"9(--O991--O992) 

= - -  0-9 (0)81 -]- (082) = - -  0-9 '  

Whence 0-9 = - - 1 .  Next condition B2 gives 

0 ~  0)50 = if5 (O951"~- O952) : 0 " 5  ((D81 -~- (.082--(D92) 

as(1 - -0)92  ) =0-50)91 

since o991< 0, it follows that 0-s=l. Similar analysis, involving successive application of 
orthogonality conditions for C2, B1, and C~ give respectively that 0-6 = - -  1, 0-2 = 1, and 0-3 = - 1 
as assumed in the previous section. 

The remaining signs a t  = 1, 0-,,=0-7 = -  1, are obtained by replacing the material balance 
eq. (24) for A by the inequality: 

A,-1 >~A,(1 +k~O,) .  (37) 

To justify this, regard eq. (37) as giving the freedom to remove, from the stream entering reactor 
n, material A at any non-negative rate 

Then eq. (37) becomes 

A , _  I - c~ ,_  1 = A , ( l  + kl  O1) . 

Since the yield of B3 can only be decreased by permitting e,_ 1 to be positive, the optimum 
value of c~,_ ~ must be zero. Hence eq. (37) can only be satisfied as an equality at the optimum, 
and no generality is lost in replacing eq. (24) by eq. (37). If, on the other hand, the equality were 
reversed, it would never be tight at the optimum, since this sense of the inequality corresponds 
to being able to add arbitrary amounts of A at any reactor, increasing the yield without limit. 
Hence reversing the inequality is the same as deleting it entirely, which would obviously be 
absurd. Incidentally, this type of argument, when applied to the material balances on B, 
leads to 0-2=0-5=0-8=1 as proven in the preceding paragraph. Without the l~reliminary 
analysis described in this section, it would in principle have been necessary to examine all 2 9 

possible combinations of the nine signum functions. 

7. Proof of the Equilibrium Conditions 

Reference [16] proves that if x* is a primal point where y(x)  is minimum, then there exists an 
auxiliary point o)* > 0 where d(o)*) = y(x*) and whose coordinates satisfy the following (see 
eqs. 46, 47, 61, 62 and of ref. [16], for every t =  1, ..., Tm and m = 1 . . . . .  M 

N 

a0t log (Wot/Cot) - log ao 9o - 2 aot. #n = 0 
n = l  

N 

0-mtlOg(Wmt/Cmt)--lOgamg m -- ~ amt,# ~ = 0 
n=l  
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where #, (n = 1,..., N) are real constants that are not relevant here. Let each equation be 
multiplied by V,m, (r= 1 . . . . .  T - ( M +  1)), the T - ( M +  !)solutions to eqs. (13) and (14), and 
let these equations be summed over all m and t. Then for all r, 

M T m TO 

Z • amtVmtrlog(Wm~/C'nt)--logaogo Z aozVotr 
m = 0  t = l  t = l  

M Tm M Tm N 

- Z 1ogo',,gm 2 Cr"tVmtr-- Z Z Z ~7rntamtnVmtr#n~- 
m = l  t ~ I  m = O  t = l  n = l  

M Tm 

Z am'Vmtrlog(W"u/Cmt) =0" (38) 
m = O  t = l  

Thus only the first sum remains; the second vanishes by eq. (13) ; the third, because the tightness 
of the primal constraints makes am 9m unity ; and the fourth, because ofeq. (14). The equilibrium 
conditions (Eqs. 15 and 16) follow from eq. (38) by exponentiation and reaggangement. 

8. C o n c l u s i o n s  

The auxiliary problem of generalized polynomial optimization now can be interpreted by 
analogies with dimensional analysis and the chemical law of mass action. An example showed 
that an important class of highly nonlinear chemical reactor design problems can be formulated 
and solved using this theory. By itself, the theory would seem to require examination of all 
combinations, either of tight and loose inequality constraints, or of positive and negative sig- 
num functions for equality constraints. However, the example demonstrated how additional 
analysis in practice can determine the few combinations having physical relevance. In the 
example, such reasoning eliminated all but one of the 29 possible combinations of nine con- 
straint signum functions. For the single case remaining, the auxiliary equations were solved 
without difficulty using a standard Newton-Raphson procedure. 
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